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LETTER TO THE EDITOR 

On the possibility of direct observation of the difference 
between cyclic and zero boundary conditions 

A M Zagoskin and I O  Kulik 
Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov 
310164, USSR 

Received 4 April 1990 

Abstract. The two-dimensional point contacts formed in the inversion layer of GaAs- 
AlGaAs heterojunctions demonstrate steps in their conductance versus gate potential depen- 
dence. It is shown that the step structure depends on the topology of the contact which can 
be changed from one corresponding to zero boundary conditions, to that appropriate for 
cyclic ones. The step structure would follow the relation G = (2e2/h)n in the first and G = 
(2e2/h)(2n + 1) in the second case (n = 0 , 1 , 2 ,  . . .). 

It is well known that the cyclic boundary conditions conventionally used in solid state 
physics to eliminate the surface influence result in simple characterisation of the energy 
levels for finite periodic systems. The applicability of these conditions to macroscopic 
systems is justified by the fact that they give correct values of bulk observables, e.g., the 
number of states per site. Nevertheless, these two types of boundary condition describe 
systems with different topologies. To demonstrate the qualitative difference between 
them we need a system in which we can change the boundary condition from cyclic to 
zero and vice versa and compare results. We shall show that the two-dimensional point 
contact of a special geometry can be such a system: quantisation of its conductance 
qualitatively depends on its topology. 

It was shown in recent papers [l ,  21 that the conductance of a two-dimensional 
electron gas ( ~ D E G )  flowing through a junction of diameter d ,  as a function of d ,  displays 
steps of magnitude 2e2/h = (12.912 kQ)- l .  A simple explanation of the effect is based 
upon quantisation of the transverse momentum of an electron in the contact region. 

The conductance is given by the formula 

in which T,(d) (0 s Tn s 1) is the filling number of the nth transverse mode existing in 
the contact. This quantity can also be regarded as the transparency of the nth conducting 
channel, so that (1) is interpreted as the multichannel version of Landauer’s formula [ 3 ] ,  
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Figure 1. Conductance quantisationin aninfinitelylongchannelofwidthd: (a)  zero boundary 
condition, ( b )  cyclic boundary condition. 

without interchannel scattering (see [4]). If the contact is modelled by an infinitely long 
channel of width d ,  then the wave function of the nth transverse mode is 

$, ( x )  = ( 2 / d )  '1' sin(nnx/d). ( 2 )  

It corresponds to the energy 

E,(d)  = ( h t ~ / 2 d ) ~ / 2 m  ( n  = 1 , 2 , .  . .). 

If, on the contrary, we choose the cyclic boundary conditions then 

$; ( x )  = (d)-'/' exp( ?2ninx/d) (3) 

E ;  ( d )  = ( h r ~ / d ) ~ / 2 m  (n  = 0 , 1 , 2 , .  . .). (30) 

and the energy equals 

Let us suppose that the connection of our channel to the electronic reservoirs is 
adiabatic. Then, the value of T, is 

Tn(d)  = e ( E F  - E n ( d ) )  

where e(x) is the Heavyside step function, and (1) can be rewritten in the form 

G ( d )  = (2e2/h)  2 v E 0 ( E F  - E ( d ) ) .  ( 4 )  
E 

v E  is the multiplicity of the energy level E .  The dependence G upon d has steps in both 
cases but the character of the step differs. 

The case of the zero boundary condition has been discussed in [ l ,  21. It is clear from 
(4) that G has steps of the magnitude 2e2/h each time d is increased by kF/2 (see figure 
l(a)), and the first step develops at d = &/2. 

In the case of cyclic boundary conditions the picture is different. Since the transverse 
energy levels are twice degenerate, G ( d )  has 4e2/h steps when d is increased by AF (figure 
l(b)).  The only non-degenerate level ( n  = 0) produces a 2e2/h step beginning at d = 0. 
This does not mean that the channel of zero width has finite conductance because such 
a channel cannot be adiabatically connected with the reservoirs. Therefore the first step 
will be smoothed out but the behaviour of the conductance at d + 0 in the case of the 
cyclic boundary conditions is clearly different from that for zero ones. 
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Figure2. Exactlysolvable configuration for a two- 
dimensional point contact. ( a )  Glueing of two 
planesin an attempt to allow for conductance from 
one to another. (b )  Cylindrical surface connecting 
two planes. 

Let us clarify the above speculation by considering an exactly solvable model of a 
two-dimensional ballistic point defect [ 5 ] .  As was shown by approximate solution [6 ]  of 
the Schrodinger equation for the contact shaped as a rectangular channel, the con- 
ductance has 2e2/h steps with resonant structure due to electron reflection at sharp edges 
of the channel. If we roll the rectangular channel into a tube, and glue its edges to planes 
having orifices of the same diameter, the configuration shown at figure 2,  we shall obtain 
geometry,of a contact .subject to the cyclic boundary conditions with respect to the 
transverse coordinate, x = Re ( 0  is the azimuthal angle). 

Since the system is radially symmetric, the Schrodinger equation can be solved 
exactly. The boundary conditions at circles S and S' connecting the planes with the tube 
are 

~ p ( ~ ,  e )  = ' u p ( 2 ,  e )  = vL(e) I r = o  
z = L  

Y ~ ~ ) ( Y ,  e )  = Y ~ ( z ,  e )  = vo(e) I r = a  1 z = o  
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The second and fourth lines provide for preservation of the current; U > 0 can be 
regarded as the magnitude of the effective &potentials uniformly distributed along S, S'. 
The wave function of an electron propagating from the upper plane to the orifice is 

a 

' ~ i 1 . 2 )  = inXn(kr) cine (6) 
,= --r 

where 

L 

Xi2)(kr) = It,(J,(kr) + iN,(kr)). I (7)  

J,, N ,  are the Bessel and Neumann functions, respectively. 
The wave function Y V k ( r ,  0 )  consists of a plane wave with the wavevector k ,  sup- 

plemented by a scattered wave in the upper bank, and a diverging wave in the lower 
bank. 

The wave function on the cylindrical surface is 

v i c ) ( z >  6 )  = Z [C: exp(Un(E)q) + C ,  exp(-wn(E)q) cine (8) 
n 

where E = kFu and q = kFL are the dimensionless radius and the length of the contact, 
respectively, and w,(g) = i[ l  - (n /E)2 ]1 /2 .  The coefficientsp,, z, and c,' are determined 
by the solution of ( 5 ) .  

The conductance of the contact in the limit V-, 0 (where eV is the contact bias) is 
represented as 

G = (2e2/h) ( T o  + 2 T ,  
n =  1 

(9) 

where T, = 1~,,(5)1~, 0 < T, < 1. The solution for T, reads 

where HL1)(E) is the Hankel function. For simplicity we put U = 0. 
It can easily be shown that for a sufficiently long cylinder the conductance as a 

function of E has steps with resonant structure, the total number of which (before the 
steps smoothen out) is of the order of N = 13 ( J ~ / A ~ ) ~  (at T = 0). As is seen from figure 
3, the first step is quite sharp at small a. The resonant structure of the step is similar to 
that discussed in [6]. If we 'cut' the cylinder along the line A A ,  the picture will change 
into the 'zero' pattern with 2e2/h steps (figure 1). 

These considerations allow us to suggest a direct experimental demonstration of the 
difference between the cyclic and zero boundary conditions. The configuration of figure 
3 can be realised, for example, as an inversion layer on two sides of an isolated flat metal 
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Figure 4. Scheme of the proposed experimental 
demonstration of the difference between the zero 
and cyclic boundary conditions. M is the metal 
mask, S a semiconductor, D the insulating layer. 
I is the inversion layer, and G the metallic elec- 
trode (a gate). 

mask M with an orifice of the radius a, imbedded into a semiconductor S (figure 4). The 
effective radius of the contact f = kFa depends on the potential applied to M. The 
negative potential on the gate G will ‘cut’ the cylindrical layer and qualitatively change 
the form of the dependence G(6) from being 2e2/h step-like to 4e2/h  step-like. 

We are grateful to Dr  R I Shekhter and Dr E N Bogachek for helpful discussions. 
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